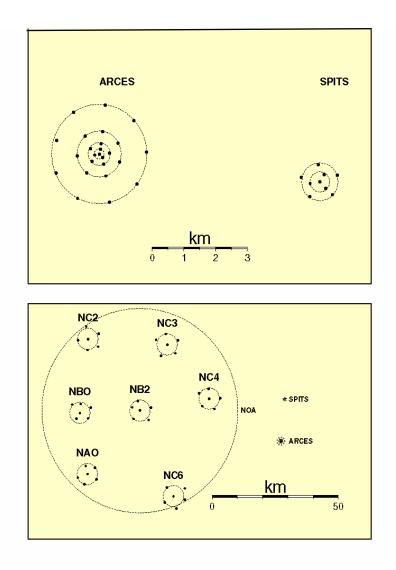

# NORSAR – FDSN REPORT 2007

## Introduction

NORSAR was established in 1968 when a Government-to-Government agreement between the United States of America and Norway came into effect. The agreement focused on seismic array research with the main purpose to develop means for the verification of compliance with a future nuclear-test-ban treaty. NORSAR was established to fulfil the objectives of this agreement. From 1970-1993, NORSAR was a section of the Royal Norwegian Council for Industrial and Scientific Research, and from 1993-1999 a section of the Norwegian Research Council. With ratification of the CTBT by the Norwegian Parliament, NORSAR has been established as the Norwegian National Data Center (NDC) for treaty verification and became an independent research foundation on July 1<sup>st</sup>, 1999. NORSAR employs about 50 people.



Figure 1. Main building of the NORSAR institute in Kjeller, Norway.




*Figure 2.* A map of all existing and planned Norwegian IMS stations. NORSAR, as the Norwegian NDC, is responsible for the seismic auxiliary stations AS72 (SPITS array) and AS73 (3C stations JMIC), the primary stations PS27 (NORSAR array) and PS28 (ARCES array), the yet to be built infrasonic array close to ARCES (IS37) and the radionuclide station on Spitsbergen (RN49).

Based on a strong international profile, NORSAR conducts research, development and consulting within various fields of seismology and applied geophysics. From the early days of devoted seismic array research, NORSAR has broadened its research activities to include subjects like earthquake hazard & risk assessment and seismic modelling for the petroleum industry. The infrastructure of the institute consists of a data centre and field installations (several seismic array stations) constructed for the recording of seismic signals from earthquakes and underground explosions.

NORSAR is a large seismological observatory specialized in seismic arrays, and with extensive access to data in real time from its own stations and from stations operated by other institutions, and from various data banks. Out of many seismic arrays in northern Europe providing data in real time to NORSAR, four are located on Norwegian territory and the remaining ones in other countries. NORSAR's own data are freely available to the seismological community. NORSAR scientists have involved themselves and their institute extensively in international cooperation over the years regarding various aspects like array design, installation and operation. NORSAR has been a main contributor to the technology presently being implemented at the International Data Centre (IDC) of the Provisional Technical Secretariat of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) in Vienna. For further general information on NORSAR see the last Annual Report as published on NORSAR's web-page

(http://www.norsar.no/NORSAR/pdf/NORSAR\_Annual\_Report\_2006.pdf).



*Figure 3.* Geometry and size of the three NORSAR arrays currently in operation. The NORES array (at the moment out of operation) has a geometry identical to that of ARCES and is co-located with site NC602 of the large NORSAR array.

## The Network

The seismic network currently operated by NORSAR consists of three seismic arrays and one three-component (3C) station (see Fig. 2). Fig. 3 shows geometry and size of the different arrays. All these installations are part of the IMS operated for the CTBT organization in Vienna. A fourth array (the NORES array) co-located with one of the NORSAR subarrays is at the moment out of operation due to a fire caused by lightening, which destroyed most of the electronic equipment. The arrays are located in Southern Norway (NORSAR, NOA array, PS27), the Norwegian Arctic (ARCES array, PS28) and on Spitsbergen, the main island of the Svalbard Archipelago (SPITS array, AS72). The 3C station is located on the Island of Jan Mayen in the North Atlantic between Norway and Greenland (JMIC, AS73). All arrays are equipped with short period or broadband sensors from different vendors but each array has at least one 3C broadband sensor. The 3C station on Jan Mayen is equipped with one STS-2 broadband sensor. Since September 2004, the NORSAR network is member of the Federation of Digital Seismographic Networks (FDSN) and the FDSN network code is NO.

|                | Latitude [°]       |                    | Elevation [km] | Instrument                     | Component(s) |
|----------------|--------------------|--------------------|----------------|--------------------------------|--------------|
|                | ray (NOA, PS27     |                    |                |                                |              |
|                | A0 (Brumundda      |                    | 0.0700         | TC 20171 0104                  | CD7          |
| NAO00          | 60.8237            | 10.8324            | 0.3790         | TG 20171-0104<br>TG-20171-0104 | SPZ<br>SPZ   |
| NAO01          | 60.8442            | 10.8865            | 0.4260         | KS-54000-0105                  | BB3C         |
| NAO02          | 60.8057            | 10.8971            | 0.3620         | TG 20171-0104                  | SPZ          |
| NAO03          | 60.7881            | 10.8084            | 0.2230         | TG 20171-0104                  | SPZ          |
| NAO04          | 60.8105            | 10.7625            | 0.2970         | TG 20171-0104                  | SPZ          |
| NAO05          | 60.8507            | 10.8193            | 0.2900         | TG 20171-0104                  | SPZ          |
|                | B2 (Vangsåsen)     |                    |                |                                |              |
| NB200          | 61.0397            | 11.2148            | 0.7170         | TG 20171-0104                  | SPZ          |
|                |                    |                    | 0 (120         | TG 20171-0104                  | SPZ          |
| NB201          | 61.0495            | 11.2939            | 0.6130         | KS-54000-0105                  | BB3C         |
| NB202          | 61.0069            | 11.2778            | 0.6470         | TG 20171-0104                  | SPZ          |
| NB203          | 61.0107            | 11.1677            | 0.7300         | TG 20171-0104                  | SPZ          |
| NB204          | 61.0498            | 11.1581            | 0.6700         | TG 20171-0104                  | SPZ          |
| NB205          | 61.0710            | 11.1977            | 0.6370         | TG 20171-0104                  | SPZ          |
| Subarray N     | BO (Moelv)         |                    |                | 1                              |              |
| NBO00          | 61.0307            | 10.7774            | 0.5290         | TG 20171-0104                  | SPZ          |
|                |                    |                    |                | KS-54000-0105                  | BB3C         |
| NBO01          | 61.0616            | 10.7834            | 0.5960         | TG 20171-0104                  | SPZ          |
| NBO02          | 61.0492            | 10.8569            | 0.5210         | TG 20171-0104                  | SPZ          |
| NBO03          | 61.0129            | 10.8371            | 0.4290         | TG 20171-0104                  | SPZ          |
| NBO04          | 61.0119            | 10.7524            | 0.3980         | TG 20171-0104                  | SPZ          |
| NBO05          | 61.0597            | 10.7219            | 0.5530         | TG 20171-0104                  | SPZ          |
|                | C2 (Lillehamme     |                    |                | ľ                              |              |
| NC200          | 61.2807            | 10.8354            | 0.8470         | TG 20171-0104                  | SPZ          |
| NC201          | 61.2988            | 10.9138            | 1.0330         | TG 20171-0104                  | SPZ          |
| NC202          | 61.2545            | 10.9110            | 1.0540         | TG 20171-0104                  | SPZ          |
| NC203          | 61.2438            | 10.8318            | 0.7140         | TG 20171-0104                  | SPZ          |
| NC204          | 61.2759            | 10.7629            | 0.8510         | TG 20171-0104                  | SPZ          |
|                |                    |                    |                | KS-54000-0105                  | BB3C         |
| NC205          | 61.3231            | 10.8227            | 0.9580         | TG 20171-0104                  | SPZ          |
| Subarray N     | · · · ·            | 11 41 41           | 0.2((0         | TC 20171 0104                  | CD7          |
| NC300          | 61.2617            | 11.4141            | 0.3660         | TG 20171-0104                  | SPZ          |
| NC301<br>NC302 | 61.2762<br>61.2328 | 11.4905<br>11.4726 | 0.2900         | TG 20171-0104<br>TG 20171-0104 | SPZ<br>SPZ   |
| NC302          | 01.2328            | 11.4/20            | 0.3000         | TG 20171-0104                  | SPZ          |
| NC303          | 61.2251            | 11.3690            | 0.4010         | KS-54000-0105                  | BB3C         |
| NC304          | 61.2784            | 11.3320            | 0.3930         | TG 20171-0104                  | SPZ          |
| NC305          | 61.2979            | 11.4035            | 0.3730         | TG 20171-0104                  | SPZ          |
|                | C4 (Elverum)       | 11.4035            | 0.3120         | 10 20171-0104                  | JFZ          |
| NC400          | 61.0791            | 11.7189            | 0.5220         | TG 20171-0104                  | SPZ          |
| NC400          | 61.0804            | 11.7994            | 0.5830         | TG 20171-0104                  | SPZ          |
| NC402          | 61.0446            | 11.7573            | 0.4500         | TG 20171-0104                  | SPZ          |
| NC403          | 61.0537            | 11.6683            | 0.3040         | TG 20171-0104                  | SPZ          |
| NC404          | 61.0982            | 11.6456            | 0.3320         | TG 20171-0104                  | SPZ          |
|                |                    |                    |                | TG 20171-0104                  | SPZ          |
| NC405          | 61.1128            | 11.7153            | 0.4960         | KS-54000-0105                  | BB3C         |
| Subarray N     | C6 (Løten)         |                    |                |                                |              |
| NC600          | 60.7473            | 11.4584            | 0.3210         | TG 20171-0104                  | SPZ          |
| NC601          | 60.7746            | 11.5416            | 0.2480         | TG 20171-0104                  | SPZ          |
| NC602          | 60.7353            | 11.5414            | 0.3050         | TG 20171-0104                  | SPZ          |
| NC602          | 40 7050            | 11 4007            | 0.2400         | CMG-3T                         | BB3C         |
| NC603          | 60.7050            | 11.4807            | 0.3400         | TG 20171-0104                  | SPZ          |
| NC604          | 60.7263            | 11.3956            | 0.3780         | TG 20171-0104                  | SPZ          |
| NC605          | 60.7770            | 11.4103            | 0.2420         | TG 20171-0104                  | SPZ          |
| ARCES Arra     |                    | 25 5059            | 0 4030         | CS12                           | SD3C         |
| ARA0<br>ARA1   | 69.5349<br>69.5363 | 25.5058<br>25.5071 | 0.4030         | GS13<br>GS13                   | SP3C<br>SPZ  |
| ARA1<br>ARA2   | 69.5338            | 25.5071            | 0.3920         | GS13<br>GS13                   | SPZ          |
| ANAZ           | 07.0000            | 20.0070            | 0.3720         | 0313                           | JFL          |

 Table 1. All seismometer sites of the NORSAR network and their actual instrumentation.

| ISC Code     | Latitude [°]       | Longitude [°]      | Elevation [km]   | Instrument   | Component(s) |
|--------------|--------------------|--------------------|------------------|--------------|--------------|
| ARA3         | 69.5346            | 25.5019            | 0.4020           | GS13         | SPZ          |
| ARB1         | 69.5379            | 25.5079            | 0.4140           | GS13         | SPZ          |
| ARB2         | 69.5357            | 25.5134            | 0.3970           | GS13         | SPZ          |
| ARB3         | 69.5324            | 25.5106            | 0.3760           | GS13         | SPZ          |
| ARB4         | 69.5328            | 25.4998            | 0.3780           | GS13         | SPZ          |
| ARB5         | 69.5363            | 25.4985            | 0.4050           | GS13         | SPZ          |
| ARC1         | 69.5411            | 25.5079            | 0.3810           | GS13         | SPZ          |
| ARC2         | 69.5383            | 25.5229            | 0.3950           | GS13         | SP3C         |
| ARC3         | 69.5329            | 25.5231            | 0.3760           | GS13         | SPZ          |
| ARC3         | 69.5293            | 25.5117            | 0.3770           | GS13         | SP3C         |
| ARC4<br>ARC5 |                    |                    | 0.3740           | GS13         | SPZ          |
|              | 69.5300            | 25.4981            |                  |              |              |
| ARC6<br>ARC7 | 69.5341<br>69.5396 | 25.4882<br>25.4937 | 0.3950<br>0.3620 | GS13<br>GS13 | SPZ<br>SP3C  |
|              |                    |                    |                  |              |              |
| ARD1         | 69.5483            | 25.5093            | 0.3950           | GS13         | SPZ          |
| ARD2         | 69.5452            | 25.5308            | 0.3660           | GS13         | SPZ          |
| ARD3         | 69.5366            | 25.5483            | 0.3310           | GS13         | SPZ          |
| ARD4         | 69.5271            | 25.5362            | 0.3710           | GS13         | SPZ          |
| ARD5         | 69.5214            | 25.5118            | 0.3510           | GS13         | SPZ          |
| ARD6         | 69.5227            | 25.4900            | 0.4130           | GS13         | SPZ          |
| ARD7         | 69.5294            | 25.4707            | 0.4130           | GS13         | SPZ          |
| ARD8         | 69.5384            | 25.4686            | 0.3680           | GS13         | SPZ          |
| ARD9         | 69.5454            | 25.4857            | 0.3590           | GS13         | SPZ          |
| AREO         | 69.5349            | 25.5058            | 0.4030           | CMG-3T       | BB3C         |
| NORES Arra   | ay (currently ou   | t of operation)    |                  |              |              |
| NRAO         | 60.7353            | 11.5414            | 0.3020           | GS13         | SP3C         |
| NRA1         | 60.7366            | 11.5423            | 0.2910           | GS13         | SPZ          |
| NRA2         | 60.7343            | 11.5433            | 0.3110           | GS13         | SPZ          |
| NRA3         | 60.7350            | 11.5387            | 0.2960           | GS13         | SPZ          |
| NRB1         | 60.7381            | 11.5426            | 0.2990           | GS13         | SPZ          |
| NRB2         | 60.7355            | 11.5475            | 0.3150           | GS13         | SPZ          |
| NRB3         | 60.7326            | 11.5440            | 0.3140           | GS13         | SPZ          |
| NRB4         | 60.7333            | 11.5372            | 0.2990           | GS13         | SPZ          |
| NRB5         | 60.7367            | 11.5363            | 0.2890           | GS13         | SPZ          |
| NRC1         | 60.7414            | 11.5434            | 0.2990           | GS13         | SPZ          |
| NRC2         | 60.7383            | 11.5525            | 0.3390           | GS13         | SP3C         |
| NRC3         | 60.7331            | 11.5533            | 0.3520           | GS13         | SPZ          |
| NRC4         | 60.7293            | 11.5452            | 0.3110           | GS13         | SP3C         |
| NRC5         | 60.7301            | 11.5341            | 0.2990           | GS13         | SPZ          |
| NRC6         | 60.7348            | 11.5287            | 0.3030           | GS13         | SPZ          |
| NRC7         | 60.7402            | 11.5331            | 0.2750           | GS13         | SP3C         |
| NRD1         | 60.7486            | 11.5449            | 0.3050           | GS13         | SPZ          |
| NRD2         | 60.7444            | 11.5616            | 0.3720           | GS13         | SPZ          |
| NRD2         | 60.7359            | 11.5689            | 0.4530           | GS13         | SPZ          |
| NRD3         | 60.7271            | 11.5633            | 0.3790           | GS13         | SPZ          |
| NRD4<br>NRD5 | 60.7222            | 11.5633            | 0.3790           | GS13<br>GS13 | SPZ          |
| -            |                    | 11.5475            |                  |              | SPZ          |
| NRD6         | 60.7233            |                    | 0.3520           | GS13         | -            |
| NRD7         | 60.7302            | 11.5162            | 0.3370           | GS13         | SPZ          |
| NRD8         | 60.7390            | 11.5167            | 0.3010           | GS13         | SPZ          |
| NRD9         | 60.7466            | 11.5266            | 0.2780           | GS13         | SPZ          |
| NREO         | 60.7352            | 11.5414            | 0.3070           | KS-36000     | BB3C         |
| SPITS Array  | , , , ,            | 1( 0700            | 0.0000           |              | <b>BB</b> 22 |
| SPA0         | 78.1777            | 16.3700            | 0.3230           | CMG-3TB      | BB3C         |
| SPA1         | 78.1797            | 16.3755            | 0.3200           | CMG-3TB      | BBZ          |
| SPA2         | 78.1759            | 16.3766            | 0.2500           | CMG-3TB      | BBZ          |
| SPA3         | 78.1773            | 16.3588            | 0.3390           | CMG-3TB      | BBZ          |
| SPB1         | 78.1796            | 16.3906            | 0.3010           | CMG-3TB      | BB3C         |
| SPB2         | 78.1742            | 16.3846            | 0.2000           | CMG-3TB      | BB3C         |
| SPB3         | 78.1737            | 16.3584            | 0.2340           | CMG-3TB      | BB3C         |
| SPB4         | 78.1789            | 16.3482            | 0.3400           | CMG-3TB      | BB3C         |
| SPB5         | 78.1823            | 16.3683            | 0.2950           | CMG-3TB      | BB3C         |
| JMIC (AS73   | 3)                 |                    |                  |              |              |
| JMIC         | 70.9866            | -8.5057            | 0.160            | STS-2        | BB3C         |
|              |                    |                    |                  |              |              |

Starting 10 November 2000, NORSAR keeps all new data from its stations including all broadband channels on-line on disk (RAID system with a capacity of about 18 TByte) and all data are copied onto NORSAR's robot-tape archiving system with a capacity of about 50 TByte. All old data were and still are copied from the old tape archive (ExaBytes, MAG tapes) into the RAID and robot-tape archiving systems.

In October 2003, a new broadband station was installed on Jan Mayen, an island in the middle of the North Atlantic. NORSAR is responsible for this new 3C BB station (JMIC), which is an auxiliary station of the IMS of the CTBTO in Vienna.



NORSAR DATA CENTER (NDC)

*Figure 4.* Structure of NORSAR's data archive and data flow from and to NORSAR. The data received by NORSAR from other data centres in line with various bilateral co-operative agreements are plotted as broken lines.

In August 2004, the long planned refurbishment of the SPITS array could be realized: new data loggers were installed and all seismometers were exchanged to 1C or 3C broadband borehole sensors.

Further details on NORSAR as Norwegian NDC and technical details of the data exchange between the data center at Kjeller and the seismic installations can be found in Fyen & Iranpour (2003, <u>http://orfeus.knmi.nl/newsletter/vol5no2/norsar.html</u>).

#### (Fast) Exchange of Earthquake Related Parameters

NORSAR has a long tradition in real time location of seismic events. Since its start in the early 1970s, teleseismic events were located by measuring ray parameter and backazimuth of detected P-type onsets with the large NORSAR array. Since more than one decade, such automatic solutions for larger teleseismic events are automatically distributed via e-mail to EMSC and other interested institutions. The analyst reviewed teleseismic locations are published on NORSAR's web-page (http://www.norsar.no/NDC/bulletins/norsar/).

During the 1980s NORSAR was heavily involved in developing the concept of single-array locations based on local and regional P- and S-type observations with small aperture arrays. The results of many years of on-line, fully automatic data analysis of small-aperture array data are available on NORSAR's web-page (http://www.norsar.no/NDC/bulletins/dpep/).

At the beginning of the 1990s NORSAR developed the Generalized Beam Forming (GBF) method which jointly interprets detections from several arrays. The combination of observations from several arrays and location with a grid search algorithm results in a more robust automatic event list at local and regional distances. Also all GBF results are available on NORSAR's web-page (<u>http://www.norsar.no/NDC/bulletins/gbf/</u>).

Based on the GBF results, analyst reviewed data interpretations and event locations are performed and distributed to the community. In addition to the small aperture array results, these analyst reviewed locations may also contain onset readings from non-NORSAR 3C-stations. As shown in Fig. 4, NORSAR receives data from other data centres in line with various bilateral co-operative agreements. The analyst reviewed results for local and regional events are distributed by e-mail to international data centres like ISC or EMSC but also to the University of Bergen and other interested institutions. The results are also copied on NORSAR's web-page (http://www.norsar.no/bulletins/regional/).

To inform the public in Norway in the case of felt seismic events, NORSAR developed during the year 2001 an (internal) alert system, which automatically locates seismic events within about 5 to 10 minutes, after a first onset with a high signal-to-noise ratio (SNR) has been observed at one of its stations. This system is also able to locate regional and teleseismic events with large SNR observations. By July 2002, this system was stable enough that its results could be distributed externally. Based on observations at the arrays ARCES, FINES, HFS, NORES, NORSAR and SPITS, locations of large(r) seismic events are automatically sent to ORFEUS and the European-Mediterranean Seismological Centre (EMSC). In addition to triggering activities at the data centres, these alert messages with their included onset parameters are used in particular at the EMSC to calculate very quickly together with other observations more precise event locations. Not all located events are reported to ORFEUS and EMSC: NORSAR reports only those events, which have been located by P onsets from at least 3 arrays. However, all last 40 NEWS locations are available from NORSAR's web-page (http://www.norsar.no/bulletins/alert/).

#### Waveform Data Exchange

As part of its CTBT related activities, NORSAR distributes data from several installations to different data centres, to which the whole seismological community may not have free access. As a supporter of an open-data policy, the NORSAR data centre has since several years an email-based AUTODRM system running. In October 2003, after NORSAR received in the context of the MEREDIAN project supporting software from ORFEUS, NORSAR could extend this service and install on NORSAR's website a web-page for direct and thereby faster access to the AUTODRM service (http://www.norsar.no/NDC/data/autodrm.html).

Since the end of October 2002, NORSAR sends the continuous broadband data stream of the broadband sensor installed at the ARCES array site E0 (ARE0, see Tab. 1) to ORFEUS. The chosen data format is CD1, a data exchange format developed for on-line data exchange between stations/arrays and the International Data Centre (IDC) of the CTBT organisation in Vienna. On 20 May 2003, NORSAR started with the on-line transmission of one of the 3C broadband sites of the NORSAR array (NAO01, see Tab. 1). Finally on 7 June 2007, the CD1.1 connection with ORFEUS could be established. Via this connection NORSAR sends the BB 3C data of one of the SPITS array sites (SPA0, see Tab. 1) and of the 3C station on Jan Mayen (JMIC, see Tab. 1) to ORFEUS. As of June 2007, NORSAR now contributes with four BB 3C data streams to the VEBSN.

The improvement in the fast and reliable exchange of broadband (BB) data between European institutions is part of the MEREDIAN project. To supplement NORSAR's location capabilities, NORSAR exchanges through bilateral cooperation data with other seismological institutions. Depending on size and location of an event the reviewed regional bulletins (see above) may contain additional readings from arrays and 3component broadband stations operated by these institutions. Data from BB 3C stations are retrieved from the international data centres GEOFON in Potsdam, IRIS DMC in Seattle, and ORFEUS in DeBilt.

| Station | Туре  | Station Operator(s)                               |  |
|---------|-------|---------------------------------------------------|--|
| Apatity | Array | Kola Regional Seismological Center                |  |
| EDI     | BB 3C | British Geological Survey                         |  |
| FINES   | Array | University of Helsinki                            |  |
| Hagfors | Array | Swedish Defence Research Agency (FOI)             |  |
| KBS     | BB 3C | GEOFON / IRIS / USGS / AWI / University of Bergen |  |
| KONO    | BB 3C | IRIS DMC / USGS / University of Bergen            |  |
| LRW     | BB 3C | British Geological Survey                         |  |
| MUD     | BB 3C | Geologiske Undersøgelser for Danmark og Grønland  |  |
| VSU     | BB 3C | GEOFON / Geological Survey of Estonia             |  |

**Table 10.2.** List of stations, from which NORSAR receives seismic data to achieve an improved regional location capability.

## Data Archiving and Data Retrieval

As seen on Fig. 4, since autumn 2001, NORSAR stores all continuous data at first on disk, either in a diskloop and later on the RAID system, or directly on the RAID system. Then these data are saved on tapes, which are accessible by an automatic tape-robot system. This tape archive is today the main data back-up system for NORSAR.

| Station    | Time Period                       | Direct Accessibility                                       |
|------------|-----------------------------------|------------------------------------------------------------|
| Old NORSAR | 04.1971 – 09.1976 event triggered | yes                                                        |
| NORSAR     | 09.1976 – 09.1982 event triggered | yes                                                        |
| NORSAR     | 09.1982 – today continuous        | yes (not 1994/95)                                          |
| ARCES      | 10.1987 – today continuous        | 1987 – 1989, 1995 – today                                  |
| NORES      | 09. 1984 – 06.2002 continuos      | 1984 – 1989, 1991, 1995, 1997 –<br>1999, 11.2000 – 06.2002 |
| SPITS      | 11.1992 – today continuous        | 1995, 1999 – today                                         |
| JMIC       | 10.2003 – today continuous        | 10.2003 – today                                            |

**Table 3.** Periods of operation for the different NORSAR stations and direct accessibility to their data (outages due to upgrading or repair activities are not tabled).

Some comments on the table above: NORSAR has digital data back to 1971. The major part of these data was originally archived in the (old) tape archive containing about 28.000 ½ inch magnetic tapes and about 4.200 8 mm data cartridges (EXABYTEs). These tapes are only accessible by operator support.

During the last years, NORSAR has worked hard on copying these old data into the tape robot archive. Up to now, all data of the large NORSAR array were retrieved from the old storage media for the years 1971 – 1993 and 1996 – 2000. In addition, all data of the small aperture arrays NORES and ARCES were copied from their earliest data in 1984 (NORES) and 1987 (ARCES) until the end of 1989. Then, NORSAR started copying data from the autumn of 2000 backwards for the small aperture arrays ARCES, NORES and SPITS to get all data directly accessible.

## Other aspects

For the future it is planned to reactivate the NORES array, which is non-operational since a lightening caused a fire in the summer of 2002.

The very important retrieval of all digital data from the old tape media will be continued. However, it will take some more years until the whole data volume recorded at NORSAR's stations will be directly accessible.

## Literature

Fyen, J. & K. Iranpour (2003): *Near real time data at NORSAR for CTBT monitoring*. ORFEUS Newsletter 5, (2), see also <u>http://orfeus.knmi.nl/newsletter/vol5no2/norsar.html</u> Schweitzer, J. (2003): *NORSAR's Event Warning System (NEWS)*. NORSAR Scientific Report 1–2003, 27-31.